வியாழன், 19 செப்டம்பர், 2024

சின்னச்சின்ன பனித்துளிகளே.





சின்னச்சின்ன பனித்துளிகளே

மேலிருந்து நீங்கள்

வீசி வீசி எறிகின்ற இவை

முற்றுப்புள்ளிகளா?

நிறுத்தற்குறிகளா?

முக்கால் புள்ளிகளா?

எங்கள் வாழ்க்கையின் 

உடல் உறுப்புகளே இவை.

உள்ளே வெப்பமாய் தகிக்கும்

உயிரின் இழைதலில்

நீக்களும் எங்களுக்கு

குழைக்கின்ற வெண்கவரிகள்

வீசத்தான் போகிறீர்கள்.

கேள்விக்குறிகளும்

விடை தெரியும் போது

வரும் வியப்புக்குறிகளும்

மனிதனிடமிருந்தே

தெறித்த பின் தான்

கடவுள் தன்னையே

முதலில் படைத்துக்கொள்கிறான்.

மண்ணின் மலர்ப்புகளும்

காய்ப்புகளும் கனிப்புகளும்

உங்களுக்கு எத்தனை எத்தனை

சுவாரஸ்யமான நாவல்கள் 

எழுதப்போகின்றன.

உங்கள் கடவுள்களிடம் 

நீங்கள் உருகிக்கரைவதற்கு முன்

இந்த நிகழ்வுகளை ஒப்பியுங்கள்.

தேவ வசனங்கள் இனிமேல் தான்

அதிலிருந்து எழுதப்படும்.

இப்போது அந்த மணியொலிகள்

கடவுளின் மூளித்தனத்து

செவிமடல்களின் சவ்வுகளை

உரிக்கட்டும்.

மனிதன் மனம் பாயுமிடம் எங்கோ

அங்கு தான்

பரமண்டலத்துக்கு

விதைகள் தூவப்படுகின்றன.

வெற்று மலட்டுச்சுவடிகள்

பிரமன்களை இன்னும்

மலட்டுப்பிம்பங்களாய் தான்

கிறுக்கி வைத்திருக்கின்றன.


_________________________________________________

சொற்கீரன்.





செவ்வாய், 17 செப்டம்பர், 2024

மடல்

 மடல்

________________________________

சொற்கீரன்.



என்னை உனக்கு அறிமுகப்படுத்த..

கூச்சமின்றி

நான் அருவியாக உன்  உச்சி மீதிலிருந்து

பளிங்கு விழுதுகளாக விழுந்து கொள்ள...

என் கனவு எனும் சல்லாத்துணியால்

உன் முகத்திரையாய் காற்றில்

அசைந்தாட...

உன் இதயத்துடிப்பு ஒவ்வொன்றும்

என் இதயத்துடிப்பில்

பல்லாங்குழிகளாகி அதில்

என்னை நான் நிரப்பிக்கொள்ள...

என் படபடக்கும் மின்னட்டாம்பூச்சிகளை

உன் மனச்சிமிழில் விட்டுப்பார்த்து

அதை ரசித்துக்கொண்டே இருக்க...

உன் இமை அதிர்வுகளில்

அந்த சந்திர சூரியர்கள் பொடி பொடியாகி

உதிர்ந்து விழும்போது

அவற்றைக்கையில் ஏந்தி

அந்த ஒளித்தடாகத்தில் 

உன் பிம்பம் பார்க்க..

வேண்டும் என்று தான் இக்கடிதம்.

இப்படிக்கு

பதில் மடல் பெறக்

காத்திருக்கும்...


ஆகா..அருமை.

என்று ஸ்டாம்பை நாக்கில் தொட்டு

கடிதம் போட்டுவிட்டேன்.

மறுநாளே மடல் வந்தது.

"எந்த மொழியில் எழுதியிருக்கிறீர்கள்.

தமிழில் மொழி பெயர்த்து

மறுபடியும் அனுப்புங்கள்.."

இப்படிக்கு

உங்கள் என்று இன்னும்

எழுதத்தயங்கும்...

ஒரு இவள்.


____________________________________________





எண்ணி எண்ணி....

 

எண்ணி எண்ணி ஓய்ந்துவிட்டேன்

என்று தான்

இந்த பூலியன் பொம்ரேனியன்

கண்டுபிடித்தேன்.

இப்போதும் 

எண்ணி எண்ணி மாளவில்லை.

செல்ல நாய்க்குட்டி என்று 

பார்த்தால்

அது சங்கிலியோடு

எங்கேயோ இழுத்துக்கொண்டு

ஓடுகிறது.

அட..இரு..

இப்போது நானே அந்த மணலில்

கூட்டல் எழுதிக்கொள்கிறேன்

விடு என்னை.

நாலும் மூணும் ஏழு..

ஆகா என்ன சுகம்.

அந்த திண்ணைப்பள்ளிக்கூட‌

வாசனையில்

கழிந்த யுகங்கள்

சுருண்டு படுத்துக்கொண்டிருக்கிறது.

நானும் தான்.


_____________________

எப்சி.

பெரியாரியம் வெல்க!

 


பெரியாரியம் வெல்க!

_______________________________________



பெரியார் வரலாறு என்று

தனியாய் இங்கு

எழுத்துக்கள் கொண்டு 

காகிதங்கள்

மேய்ந்ததில்லை.

மனித நீதியின் 

தீக்கொழுந்துகள்

சுடும் ம்னச்சன்றுகளே

பெரியார் ஏறிய மாணிக்கப்படிகள்.

மதம் 

ஒரு மனிதனை காலில் போட்டு

மிதிக்க இன்னொரு மனிதனுக்கு

அவன் பிறப்பின் வழியாய்

ஒரு மகுடத்தைச்சூட்டுமானால்

அந்த மகுடமும் கடவுள் 

அவனுக்கு மட்டுமே தந்தது என்று

ஸ்லோகங்கள் சொல்லுமானால்

மனிதனுக்கு 

இந்த மதம் தேவையில்லை.

இந்த கடவுள் தேவையில்லை

இந்த ஸ்லோகங்களும் தேவையில்லை.

இது தேவை 

என்று சொல்பவனே

அயோக்கியன்

காட்டுமிராண்டி

மனிதனாக‌

பார்க்கப்படத்தகுதியற்றவன்.

அதை 

வர்ணங்களாய்

சாதிகள் ஆயிரமாய்

சாத்திரம் செய்பவர்கள்

மனித 

வரலாற்றுப்பக்கங்களிலிருந்து

கிழித்தெறியப்பட வேண்டியவர்கள்.

பெரியார் என்றால் என்ன?

இது தாண்டா பெரியார்!

மானுட அநீதி கண்டு

சீற்றம் கொள்ளும்

எரிமலைக்கு பன்னீர் தெளிக்கும்

மடமைகளை 

தகர்ப்பவனே தமிழன்.

பெரியார் எனும் இந்த பெரியாறு

அரசியல் தந்திரம் கொண்டு

கட்டப்படும் எல்லா அணைகளையும்

உடைத்துக்கொண்டு

பொங்கிப்பெருகும்.

தமிழும் பெரியாரும்

ஒரே நெருப்பின் எண்ணக்கீற்றுகளடா!

புரிந்து கொள்ளடா தமிழா!

தெலுங்கோ கன்னடமோ

தமிழ் கொளுத்திய 

ஊழித்தீயடா பெரியார்.

சமுதாய அநீதிகளை அழிக்கும்

பெரியாரியமே

பொன் சுடர் தெறிக்கும்

தமிழியம்!

தமிழியம் வழியே 

பெரியாரியம் வெல்லும்.

பெரியாரிய ஒளியில்

தமிழியம் சுடரும்!


__________________________________________‍

சொற்கீரன்.





தமிழ் ஆற்றுத்தொகை (2)

 

தமிழ் ஆற்றுத்தொகை  (2)

________________________________________

இடைக்காடன் (இ பரமசிவன்)



களவுப்புளி அட்டு குய்புகை கமழ              25


அவனொடு உண்டலே அருநிறை  செல்வம் 


என்றிவள் இல்தோய் நிலவில் முன்றில் 


வண்ணச்சீறடி அளபடை எடுக்கும் அவன்


வருகையின் நெடுந்தொகைக்கு அணித்தொடை


யாத்த சொல்லொடு ஓர்க்கும் மன்னே.           30


போழ்தூண்டு ஊசியின் கைவினை விரைநர்         


விரல் ஊடு இழையும் நெய்வின் நேர்த்தியில்


கட்டில் நிணக்கும் கவின் ஏர் நிகழ்வு போன்ம்


காலம் பிசைந்துறும் ஊழியின் ஊர்பு


சுரன் உழன்று கோட்டின் நத்தம் நீட்டி            35


முள்மரம் வாங்கு வன்சினை தாழ‌


வழி நிழல் நச்சி பொருள் வேட்டுநன்


போஒய் நோன்று பொளிபடு பெருங்கல்


அறை தொறும் அறை தொறும்


அலை பாய்ந்தனனே அவிர் பரல் ஆற்றில்.       40


வாள் ஊர்தரும் ஞாயிற்றன்ன‌


நிழல் சுமக்கும் நாள் வீழ் ஞாலம்


மண்ணொடு நைந்து நெஞ்சம் சிதைபு


பொருள்வயின் போகிய கலித்து முகத்து


ஆர்த்தெழுந்தேகிய ஒளிமுகடு ஏந்தலின்             45


ஓங்கல் கானம் கழைநெகிழ் ஊசல்


காலொடு மின்னின் தெரியல் புனையும்


வெற்பன் நகைதூஉய் அவிழ்செறி


ஆரிடை காட்டும் முறுவல் அவள்பட்டாங்கு


ஊழி உதிர்க்கும் உதிர் ஊழி சிதார் இறைக்கும்       50


(தொடரும்)


___________________________________________________






திங்கள், 16 செப்டம்பர், 2024

நாம் வேறு ஏலியன்கள் வேறு அல்ல.

 


நாம் வேறு ஏலியன்கள் வேறு அல்ல.

__________________________________________________



எல்லா அண்டங்களும் ஒரே அண்டம் 

இதுவே எல்லா உயிர்களின் மூலம்.

பான்ஸ்பேர்மியா என்பதே

அந்த பிக் பேங்கின்

உயிர்த்திரி.

பற்ற வைக்கப்பட்ட 

உயிர் வெடிப்புகளே

இங்கும் எங்கும் இன்னும்

அங்கிங்கெனாத படி ...எல்லாம்.

எனவே

ஏலியன் என்று ஏதும் இல்லை.

பூமி கூட ஏலியன்களின் கூடு தான்.

மனிதன் மட்டுமே

மதிப்பு மிக்க விலை உயர்ந்த ஏலியன்.

மற்ற ஏலியன்களுக்கு

கடவுள்கள் தேவைப்படலாம்.

ஆனால் மனிதர்கள் தேவைப்படுகிற‌

கடவுள்களின் விண்கோளே 

பூமியெனும் மனிதக்கோள்.

நாலு கை 

மூணு முகம் இல்லாவிட்டால்

பத்து முகம் 

பத்து கை பத்து கால்

ஆறு முகம்

பன்னிரெண்டு கை

அய்யோ அப்பா!

இப்படியெல்லாமா

இந்த ஏலியன்கள்

என்று

அந்த ஏலியன்கள் மிரண்டே

ஓடிக்கொண்டிருக்கின்றன.

அறிவு வெளிச்சம் இயற்கையின் தினவு.

இந்த அரிப்பு கூட‌

இல்லாத அஞ்ஞான மூளிகளா

இங்கும் சில ஏலியன்கள்?

ஏலியன்கள் 

பூமிப்பந்தின் சில்லறை ஓட்டைகள் கண்டு

அவற்றில் முடங்கிப்போன‌

சிந்திக்கும் ஊனங்கள் கண்டு

அஞ்சியே ஓடுகின்றன ஏலியன்கள்.

மூளை இருக்கவேண்டிய 

இடத்தில் எல்லாம்

பாவமூட்டைகளும் 

கர்மாக்களும் ஜன்மாக்களுமாய்

கருங்கல் ஜல்லிக்குவியல்களே

மனிதர்கள்.

இவற்றுள் இருக்கும்

சிலிகான் வளங்கள் மட்டுமே

நமக்கு வேண்டும்.

ஏலியன்கள் இதற்காகவே 

இத்தனை கண்ணாமூச்சிகளை

அரங்கேற்றுகின்றன.

நம்மிடம் இருக்கும் 

அறியாமையின் வைரஸ் 

தொற்றிக்கொண்டு விடுமோ

என்று இவை அஞ்சி நடுங்குகின்றன.

பாவம்

அவற்றை மேலும் மேலும் விரட்டாதீர்கள்

ஓ மனிதர்களே!


__________________________________________

சொற்கீரன்


We Are the Aliens | Life's Interstellar Journey to Earth: Panspermia | Watch (msn.com)

உருவெளி மயக்கம்

 

உருவெளி மயக்கம்

________________________________________



மிளகாய்வத்தல் பூச்சி என்பார்கள்

கரப்பான் பூச்சியை.

பரிணாமக்கோட்பாட்டுக்கு

பில்லியன் ஆண்டு நட்பு உடையது.

அது

விறு விறு என்று

சுவரின் மேல் ஏறியது.

நேரே சிவன் படம்.

தன் அன்டெனா மீசையை

சிவனின் கழுத்துப்பாம்போடு 

பொருத்திக்கொண்டு

தேய் தேய் என்று தேய்த்தது.

அது சிவனோடு கிசு கிசுத்துக்கொள்கிறது

என்று எடுத்துக்கொள்ளலாம்.

எனன உரையாடல்?

மனிதன் இப்போதானே தோன்றினான்.

அப்புறம் அவனுக்கு

கதை விடத் தெரிந்ததற்கு 

அப்புறம் தானே

இந்த புராணமும் பாட்டும்

சப்பளாக்கட்டைகளும்.

அப்படியென்றால்

உனக்கு முந்தி தானே நான்.

என்ன நான் சொல்கிறது புரிகிறதா?

பூச்சியா அப்படி அதட்டுவது?

உன் தர்க்க சாஸ்திரப்படியே

எனக்கு அப்புறம் வந்த நீ

எப்படி என்னைப்படைத்திருப்பாய்?

அப்ப‌

நான் தான் உன் கடவுள்..

சரி தானே!

சரி தான்.

சிவன் புன்முறுவல் பூத்துவிட்டார்.

வழக்கம் போல்

அந்த வீட்டுக்காரர் 

சந்தியா வந்தனம் பண்ணிவிட்டு

பூஜை செய்து

தீபம் காட்ட‌

சிவனின் படத்தின் முன் வந்து 

நின்றார்

திடுக்கிட்டார்

எதேதோ அலறிய வண்ணம்

படுக்கையில் தொப்பென்று விழுந்தார்.

அது எப்படி

சிவன் படத்தில்

ஏதோ ஒரு ராட்சசன் 

மீசையை பயங்கரமாய்

அசைத்துக்கொண்டு...

அந்தப்படம்..அந்தப்படம்

என்று அவர்

கை நீட்டிக் காட்டிகொண்டே

இருந்தார்.

முகம் வெளிறி 

விழிகள் துருத்திக்கொண்டு..

அதிலிருந்து ஒரு

கரப்பான் பூச்சி சிறகு பரப்பி

முட்கால்களை உரசிக்கொண்டு

பறந்து ஓடியது.

வீட்டில் உள்ளவர்கள்

ஃபோன் செய்ய ஓடினார்கள்.

மருத்துவருக்கா?

மந்திர வாதிக்கா?


__________________________________________________

சொற்கீரன்.





வாசல்.

 


வாசல்.

_____________________________________


விழிக்கும் முன் 

வானம்

உங்கள் உள்ளங்கையில் 

ஒரு போன்சாய்.

நீண்ட கெட்டித்தட்டிப் போன‌

இருட்டுக்குழம்பில்

உரு ஏந்தி வரும்

பிண்டங்களுக்கு

உன் 

இலக்கியங்களையும் 

இலக்கணங்களையும்

சமைத்துக்கொடு.

மனிதக்கருவின் காய்

கனிந்து வர‌

உன் அறிவையும் 

நுண்மாண் நுழைபுலத்தையும்

பதியம் இட்டுக்கொடு.

ஒரு மனிதன்

எல்லா மனிதனையும்

தன் வட்டத்துள் கொண்டுவரக்

கிளம்பும் 

வெறித்தனமான மந்திரக்கூச்சல்களின்

குறுகிப்போன மூளையின் காய்ச்சல்

சாதிகளாக 

பூதம் காட்டுவதை முதலில்

அழித்து ஒழிக்க வேண்டும்.

மனித நேயம் அடர்ந்து செழிக்கும்

மனக்காடுகளே

தண்ணிழல் தரும்.

அறிவின் குரல்கள் 

அழகிய அதிர்வு எண்களின் 

பண்களும் அமைத்துத்தரும்.

மற்ற சுடுகாடுகளுக்கு

கொள்ளிக்குடம் சுமக்க வைக்கும்

தாந்த்ரீக தகடுகளை

தட்டி நொறுக்கும்

சம்மட்டிகள்

உன் குவாண்டம் கம்பியூட்டிங்

வியப்புகளில்

வித்தைகள் கோர்த்த வியூகங்களாய்

வாசல் திறந்து வரவேற்கின்றன.

இதை தவறவிட்டால்

இன்னும் ஆயிரம் ஆண்டுகளுக்குக் கூட‌

நீ

இருட்டையே தின்று 

இருட்டிலேயே நெளியும் 

புழுக்களாய்த் தான்

பூஜை செய்ய காத்துக்கிடக்கவேண்டும்.


__________________________________________

சொற்கீரன்







சனி, 14 செப்டம்பர், 2024

தமிழ் ஆற்றுத்தொகை

தமிழ் ஆற்றுத்தொகை

___________________________________

இடைக்காடன் (இ பரமசிவன்)



நிரை பெயரத்தந்து 

மாடு காண் கொளீஇ

இலை புதை பெருங்காட்டு

கொலை மறம் படுத்து

நடுகல் துஞ்சிய                           5

பெருநாட்டுத் தலைவன்

வெண்ணிப் பறந்தலை 

வெள்ளிய படப்பையின்

மன்று தேய்க்கும்

மாண் இறை நீழல்.                     10

கழை அடர் அடுக்கத்து

மஞ்சு போர்த்த நெடுவான் தோய்

செவ்வொளி பூசிய செவ்வேள்

அன்ன நிலைஇய நின்ற மாறனை

முருகு மெய் வெறியாட்டு              15

அகற்கண் அணங்கு நோக்கிய காலை

ஆய்மயிலாளும்  விழி  அம்பு தீட்டி

ஓர்த்த வான் எய்யும் 

கார்வை மிக்கு பொழிவின்

விசும்பும் விரிய நீர்க்கடல்                20

திரையின் அடர் படல் ஆர்க்கும்.

தாளி முதல் நீடிய சிறுநறு முஞ்ஞை   

முயல் வந்து கறிக்கும் முன்றில்            

கொய்குரல் அரிசியோடு

களவுப்புளி அட்டு குய்புகை கமழ‌    25


(தொடரும்)


வெல்வதும் தமிழ்.

 


வெல்வதும் தமிழ்.

______________________



தமிழ் நாடு 

என்ற சொல்

கேட்கும் போதே

அங்கே

உடல் எரிகிறது.

உள்ளம் பதறுகிறது.

ஏன்?

தமிழ் மொழியின்

ஊனும் 

உயிரும்

மானம் தான்.

ஈ என இரப்பது இழிவு.

ஈயேன் என்பது 

அதை விட இழிவு.

தனி மனிதனின் மானத்தின் முன்

வானம் எல்லாம் மண்டியிடும்.

தமிழ் மொழியில் 

மனிதன் ஒற்றையாய் நின்றாலும்

மாநிலமாய் நின்றாலும்

அதன் முதுகெலும்பு நிமிர்வு மட்டுமே

கோடி பெறும்.

அதனால் 

இங்குள்ள கடவுள்கள்

மனிதனிடம் இறைஞ்சிக்கேட்கும்

மனிதா என்னைப்பாடு என்று.

அதனால்

இந்த கோவில்களின் 

கல் தூண்களும் சரி

கல் படிக்கட்டுகளும் சரி

இப்படிப்பாடியதன்

புராணங்களை மட்டுமே சொல்லும்.

நட்ட கல்லும் பேசுமோ

மனிதன் எனும் நாதம் 

உள்ளிருக்கையில்

என்று

பெருமை கொள்ளும் மனிதமே

இங்கு விஸ்வரூபம் எடுக்கும்.

தமிழின் இந்த மண்பாடே

தனிப்பெரும் பண்பாடு.

சொல்வது தமிழ்.

வெல்வதும் தமிழ்.

_________________________________________

சொற்கீரன்.





வியாழன், 12 செப்டம்பர், 2024

சமூகப்போராளி



சமுதாயத்தோடு போராடும் வீரம்

எவருக்குமே இல்லை

மார்க்சிய சித்தாந்தவாதிகளைத்

தவிர.

அந்த போராட்டம் என்பது

சமுதாய முரண்களை 

தட்டி நொறுக்குவதே ஆகும்.

முரண்கள் முரண்களைதானே

விளைவிக்கும்.

இந்த தெளிவு உடைய‌

ஒப்பற்ற சமுதாயப்போராளியே

தோழர் சீத்தாரம் யெச்சூரி அவர்கள்.

பேரிழப்பு என்று

மோவாயைத்தடவி விட்டுக்கொண்டு

இதுவும் கடந்து போகும் என்று

சீக்குப்பிடித்த கவிதை எழுதிக்கொண்டு

பேனாவோடு சொடக்கு போடுவது அல்ல‌

அந்த 

"செவ்வணக்கம்"

அந்த மனிதனின் ஏக்கமே

நம் எல்லோருக்கும்

வெளிச்சம் தரும் 

எரிமலை ஏக்கம்.

மானிட அநியாயங்கள்

பூண்டற்றுப்போக‌

நம்மிடையே

மிச்சமிருக்கிற‌

அந்த சமூகப்போராளியின்

மூச்சுகளே

வெடித்துக்கிளரும் பேச்சுக்கள்.

அறச்சீற்றத்தின் வீச்சுக்கள்.


_____________________________________

செங்கீரன்.





புறாணம்.

 



என்ன கவலை உனக்கு?

கவலையே இல்லாதது தான் கவலையா?

ஆமாம்.

அதிலென்ன சந்தேகம்?

கவலை இருந்தால் தான்

அது கடுகு போல் இருந்தாலும்

கனத்த பாறாங்கலாய் தோன்றி

அழுத்தி அழுத்தி

மூச்சு திணறச்செய்து அப்புறம்

அதே மூச்சுத்திணறலே

பெரும் ஆற்றாய் வீசி

அந்த பாறாங்கல் "கடுகை"

பூ வென்று ஊதித்தள்ளிவிடும்.

அப்புறம் நான்

ஒரு புத்தாக்கம் பெற்ற புது மனிதன்.

கடவுள் கூட‌

என்னிடம் அது

எப்படி எப்படி??

என்று விவரம் கேட்பார்.

போதும் நிறுத்து.

என்ன இது புதிய பூதம்?

இது எங்கிருந்து முளைத்தது?

மறுபடியும்

கடுகு இராட்சசன் ஆனான்.

மனது எனும்

பெரிய நிழல் கரிய நிழல்

நம்மை கவ்விக்கொண்டிருக்கிறது.

ஏதடா வம்பு என்று

கடவுள் நம் கண்ணிலேயே படாமல் 

காணாமல் போவார்.

மனம் எனும் திரைச்சீலையின்

ஆட்டம் தானே கடவுள்!

அந்த புறாக்கள் அந்த கோவிலில்

சிறகடித்து சிறகடித்து

மந்திரம் ஓதியதில்

கருவுற்றது தானே கடவுள்.

இதுவே கடவுள் புறாணம்.


____________________________________________________‍

சொற்கீரன்

செவ்வாய், 10 செப்டம்பர், 2024

தட்டை வடிவ கணித க்யூ எஃப் டி

 தட்டை வடிவ கணித  க்யூ எஃப் டி

__________________________________________________________

Translated by E Paramasivan

1.

கட்டிஅமைக்கப்பட்ட அளபடையப் (குவாண்ட) புலக்கோட்பாடு என்பது கன்ஸ்ட்ரக்டட் க்யூ எஃப் டி ஆகும்.

ஏன் அப்படி? இயல்பான இயற்பியல் புலம் இங்கு இல்லை.தற்காலத்திய புள்ளியியல் இயங்கியம் தான் இங்கு செயல்படுகிறது.புள்ளிவிவரங்கள் நாம் செய்யும் கணித ஏற்பாடுகள் தானே.இந்த துறையில் சிறந்த ஆய்வுகள் நடத்தியவர்கள் விய்ட்மேன்,க்ளிம்,மற்றும் ஜேஃப்ஃபி ஆக்கியவர்களே.

ஐன்ஸ்டீன் பொதுசார்புக்கோட்பாட்டில் ஆழ்ந்த ஆய்வு கணிதம் செய்து கொண்டிருந்த போது உள்ள "தூரக்கூறு"(டிஸ்டன்ஸ்  எலிமென்ட்) ஒரு சிக்கலான "திசையக்கூறுகளின் தொகுப்பே" (டென்ஸார்) பயன்படுத்தப்பட்டது. ஏனெனில் வளையவியக்கூறுகள் (கர்வேச்சர் எலிமென்ட்ஸ்)அதில் இருந்தன. ஆனால் இந்த க்யூ எஃப் டியில் புள்ளியியல் கணிதத்திற்கேற்ற "ஈக்குளிடியல் வடிவ கணிதமே" ஏற்றதாய் இருந்தது. ஐன்ஸ்டீன் செயல்படுத்தியதோ கோளக வடிவத்தின் நேர்முறை வளைவியம் (ஸ்ஃபெரிகல் பாசிடிவ் கர்வேச்சர்) ஆகும்.ஆனால் இதில் தட்டை வடிவ கணிதமே (ஃப்ளேட் ஜியாமெட்ரி) அடிப்படைக் கணிப்பாக இருக்கிறது.


(to be continued)

______________________________________________________________________________


2.

 

இதில் சார்புத்தன்மையை உள்ளிட வடிவ கணிதத்தின் நேர்கோடும் வளைகோடும் வேண்டிய அளவுக்கும் மாற்றம் செய்யப்படவேண்டும். ஈர்ப்புவிசை ஆற்றல் நிறை திசைவேகம் எனும் வெலாசிடி இவையெல்லாம் உரிய கணித சமன்பாடுகளோடு உட்புகுத்தப்படவேண்டும்.இதில் ஈக்குளிடியன் புலக்கோட்பாடு "மார்க்காவ்" இயல்புகளோடு (மார்க்காவ் ப்ராப்ர்டி) அமைக்கப்படும்.இதை அப்படியொரு சரியான வடிவத்தில் ஆய்வு செய்தவர் "நெல்ஸன்" ஆவார்.இதற்கு சார்பியல் கூறுகள் சேர்க்கப்பட்ட கியூ எஃப் டி அமைக்க அவர் செயல்பட்டார்.ஏற்கனவே குறிப்பிட்ட விய்ட்மேன் என்பவர‌து அடிப்படைக்கூற்றுகள் (ஆக்ஸியம்ஸ்) எடுத்துக்கொள்ளப்பட்டன. பழைமை முறையிலிருந்து மாறுப்பட்ட களத்தில் இதை ஆய்வு செய்ய "நெல்சன்"ஒருவரே தகுதியானவர்.ஏனெனில் அவர் ஈகூளிடியன் புலம் மற்றும் புதிய குவாண்டப்புலம் ஆகிய இரண்டையும் பற்றிய‌ தெளிவான கோட்பாடுகளை  அறிந்தவர்.


_________________________________________________________________________

translation by  COPILOT


1 முன்னுரை இந்த திறனாய்வில், யூக்ளிடிய புலக் கோட்பாட்டை குவான் தும் புலக் கோட்பாட்டின் உருவாக்கமாகக் கருதுகிறோம், இது யூக்ளிடிய வெளியில் வாழ்கிறது, மேலும் இது நிகழ்தகவு சொற்களில் வெளிப்படுத்தப்படுகிறது. ஆக்கபூர்வமான குவாண்டம் புலக் கோட்பாட்டின் திடமான மாதிரிகளின் ஆய்வில் யூக்ளிடிய புலக் கோட்பாட்டிலிருந்து எழும் முறைகள் மிகவும் வெற்றிகரமான முறையில் அறிமுகப்படுத்தப்பட்டுள்ளன. யூக்ளிடிய புலக் கோட்பாடு ஷ்விங்கர் [1] மற்றும் நகானோ [2] ஆகியோரால் தொடங்கப்பட்டது, அவர்கள் புல விளைபொருட்களின் வெற்றிட எதிர்பார்ப்பு மதிப்புகளை யூக்ளிடிய பகுதியில் (ஷ்விங்கர் சார்புகள்) படிக்க முன்மொழிந்தனர், அங்கு ஒரு உலக புள்ளியின் முதல் மூன்று (இடஞ்சார்ந்த) ஆயதொலைவுகள் உண்மையானவை மற்றும் கடைசி ஒன்று (நேரம்) முற்றிலும் கற்பனையானது (ஷ்விங்கர் புள்ளிகள்). சுவிங்கர் சார்புகளை அறிமுகப்படுத்துவதற்கான சாத்தியக்கூறு மற்றும் யூக்ளிடிய குழுவின் கீழ் அவற்றின் மாறுபாடு ஆகியவை வைட்மேன் வழங்கிய வெற்றிட எதிர்பார்ப்பு மதிப்புகளின் அடிப்படையில் குவாண்டம் கோட்பாட்டின் கிளாசிக் சூத்திரத்தின் உடனடி விளைவுகளாகும். லோரென்ட்ஸ் குழுவிற்கு பதிலாக யூக்ளிடிய குழுவை அதன் நேர்மறை டெஃப் இனிட் ஸ்கேலார் தயாரிப்புடன் கையாள்வதற்கான வசதி தெளிவாக உள்ளது, மேலும் இது பல்வேறு சூழல்களில் பல ஆசிரியர்களால் பயன்படுத்தப்பட்டுள்ளது. அடுத்த கட்டமாக சைமான்சிக் [4] என்பவரால் மேற்கொள்ளப்பட்டது, அவர் போசான் புலங்களுக்கான சுவிங்கர் செயல்பாடுகள் ஒரு குறிப்பிடத்தக்க நேர்மறை பண்பைக் கொண்டுள்ளன என்பதை உணர்ந்தார், இது யூக்ளிடிய புலங்களை அவற்றின் சொந்த நலனுக்காக அறிமுகப்படுத்த அனுமதிக்கிறது. யூக்ளிடிய புலக் கோட்பாடு மற்றும் கிளாசிக்கல் புள்ளியியல் இயக்கவியல் ஆகியவற்றுக்கு இடையேயான ஒப்புமையையும் சைமான்சிக் சுட்டிக்காட்டினார் [5]. இந்த ஒப்புமை குவேரா, ரோசன் மற்றும் சைமன் [6] ஆகியோரின் அனைத்து போசான் இடைவினைகளுக்கும் வேறுபட்ட விளக்கத்துடன் வெற்றிகரமாக நீட்டிக்கப்பட்டது, மின்னஞ்சல் ∗: francesco.guerra@roma1.infn.it 1 நவீன புள்ளிவிவர இயக்கவியலின் கடுமையான முடிவுகளை கட்டுமான குவாண்டம் புலக் கோட்பாட்டின் ஆய்வுக்கு பயன்படுத்துதல், வைட்மேன் [7] முன்வைத்த நிரலுக்குள், மேலும் க்ளிம் மற்றும் ஜாஃப் ஆகியோரால் மேலும் தொடரப்பட்டது (ஒட்டுமொத்த முன்வைக்க [8] ஐப் பார்க்கவும்). யூக்ளிடிய கோட்பாட்டின் மிகவும் வியத்தகு முன்னேற்றம் நெல்சனின் பொறுப்பாகும் [9] [10]. அவர் யூக்ளிடிய புலங்களின் (மார்கோவ் சொத்து) ஒரு முக்கியமான சொத்தை தனிமைப்படுத்த முடிந்தது மற்றும் யூக்ளிடிய புலங்களுக்கு நிபந்தனைகளின் தொகுப்பை வழங்கினார், இது வைட்மேன் கோட்பாடுகளை பூர்த்தி செய்யும் சார்பியல் குவாண்டம் புலங்களின் அனைத்து பண்புகளையும் பெற அனுமதிக்கிறது. நெல்சன் கோட்பாடு மிகவும் ஆழமானது, புதிய கருத்துக்கள் நிறைந்தது. அடிப்படைக் கட்டுரைகளிலிருந்து பல ஆண்டுகளுக்குப் பிறகும், நெல்சன் கருத்துக்கள் வழங்கிய வழக்கமான கோட்பாட்டிலிருந்து தீவிரமான விலகல் பற்றிய முழுமையான புரிதல் நமக்கு இன்னும் இல்லை, குறிப்பாக அவற்றின் சாத்தியமான மேலதிக வளர்ச்சிகள் பற்றி. நெல்சன் திட்டத்தைப் பயன்படுத்தி, குறிப்பாக மிகவும் விசித்திரமான சமச்சீர் முறையைப் பயன்படுத்துவதன் மூலம், இரு பரிமாண போசான் கோட்பாடுகளுக்கான முடிவிலா தொகுதி வரம்பில் தள நிலை ஆற்றல் அடர்த்தி மற்றும் வான் ஹோவ் நிகழ்வு ஆகியவற்றின் குவிவை நிரூபிப்பது மிகவும் எளிதாக இருந்தது. ஒரு பிந்தைய பகுப்பாய்வு [12] கோட்பாட்டின் முடிவிலா தொகுதி வரம்பின் பிற பண்புகளைக் கொடுத்தது, மேலும் முன்னர் க்ளிம் மற்றும் ஜாஃப் ஆகியோரால் நிறுவப்பட்ட புலங்களுக்கான மிக முக்கியமான ஒழுங்குமுறை பண்பின் நிரூபணத்தில் குறிப்பிடத்தக்க எளிமைப்படுத்தலை அனுமதித்தது. அன்றிலிருந்து எல்லா வேலைகளும் 



 

சுவடிகள். ‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍

 


சுவடிகள்.

‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍‍_______________________________‍‍



ஏதோ எனக்கு ஒன்றும் தெரியாது

என்று அந்த 

நாரதன்

மரா மரா என்று சொல்லு

என்றானே.

ராமன் மனிதன் இல்லை

மரம் தான் என்று

எனக்கு எப்போதோ தெரிந்து

விட்டது.

ராமன் வேறு சீதை வேறு

என்று நான்

எழுத்தாணி கிறுக்கியதில்லை.

நான் வேறு அவள் வேறு

என்று அவளை

தீக்குளிக்கச்சொன்னானே 

அப்போது 

அவன் மரம் தான் என்றே 

உணர்ந்து கொண்டேன்.

இறைவன் அவதாரம் எடுத்தபோதும்

தர்ப்பைப் புல்காரன் அல்லவா

இறைவனையும் கூட‌

ஆட்டிப்படைக்கின்றான்.

நீ எனக்கு கீழே தான்.

நான் சொல்வதே தர்மம்.

உன் மனைவி தீக்குளிக்கவேண்டிய்வள்

என்று தாடியை உருவிக்கொண்டே

அந்த இறைவனையும்

தன் அகங்காரத்திற்கு 

இரையாக்கிக்கொண்டானே.

இறைவனும் கூட‌

பிராமணர்கள் பிசைந்து செய்த‌

மண்ணுப்பாண்டம் தான்

என்பதே

வேதங்களுக்கெல்லாம்

ரகசிய வேதமாக இருப்பது.

நான்மறை அலப்பறைகள்

வெறும் ஜால்ரா சத்தங்களே.

வால்மீகிக்கு 

ராமாயணம் புரிந்து விட்ட பிறகு

அவன் தீண்டத்தகாத சாதியாகி

வெளியில் நின்றான்.

இன்னும் அவன் வெளியில் தான்

 இருக்கிறான்,

அவனது சுவடிகள் மட்டுமே

அந்த பளிங்கு பீடத்தில்.


_________________________________________________

சொற்கீரன்.

வாளி

 


வாளி

_______________________________________



நான் கடவுளிடம் பேசினேன்.

நீ இப்போது எதைசெய்கிறாயோ

அதை 

நீ தான் செய்வாய்..

நீ தான் செய்ய வேண்டும்..

நீ மனிதக்குஞ்சு அல்ல..

என்று சொல்லி விட்டு மறைந்தார்.

.............

அப்போ

அந்த நாலு வேதம் சொன்னது எல்லாம்...

எந்த நாலு வேதம் என்று

திருப்பிக்கேட்டார்...

ஓஹோ ..அப்படியா?

நாகப்புரம் கொந்தளித்தே விட்டது.

நிழல் யுத்தத்தில்

அம்புகள் மோதி முறிந்து கொள்வது கூட‌

ஆத்மீக நிழல் என்றும்

கோமாதாவின் கொம்பு அசைவுகளின்

கோலச்சித்திரம் என்றும்

கொண்டாடிக்கொண்டனர்.

இந்த அறி"வாளி"கள் தேசத்தின்

ஓட்டை வாளியில்

எல்லாம் ஒழுகிப்போன பின்னும்

இருட்டு மந்திரங்களே

கெக்கலித்துக்கொண்டிருக்கின்றன.


__________________________________________

சொற்கீரன்.




 

திங்கள், 9 செப்டம்பர், 2024

"அகராதி பிடித்தவன்"

 


Erode Tamilanban
3ம.நே

·
எதற்கஞ்சும் இராப்போது
இருளை விரட்டும் குரல்கேட்டா?
எதற்கஞ்சும் விதையுயிர்கள்
இறங்குமிடிக் குரல்கேட்டா?
எதற்கஞ்சும் கடல்அலைகள்
இழுத்தடக்கும்ஆழமென்றா?
எதற்கஞ்சும் காற்றுமனம்?
இறந்தவர்கள் மூச்சுவந்து
தொடும்பொழுது வந்ததென்றா?
கவிதைக்கு வெளியே
கால்கடுக்க நிற்காதே உள்ளேவா!
விடைக்கு வெளியே
வினாவைத் துரத்தாதே!
உடைக்கு வெளியே
உடம்பைத் தண்டிக்காதே!
குடைக்கு வெளியே
குறைசொல்லி மழையை
விரட்டாதே! கூப்பிடு!
ஈரோசென்வியம்35-36
10-09-2024
அதிகாலைமணி 5-25

_________________________________________________________


அன்புக்குரிய ஈரோடு தமிழ்ன்பன் அவர்களே __________________________________________ 10.09.2024


கூப்பிடும் குரலே கவிதை. "அகராதி பிடித்தவன்" கடவுளுக்கு அது புரியவில்லை. மனிதா! நீயே படை! உன் சிந்தனையே ஆயிரம் அண்டம். அன்பு சுவாசத்தின் உன் குருவிக்கூடுகளில் எல்லா குருக்களும் தோற்றுப்போன‌ குருட்சேத்திரங்களே மிச்சம். கவிக்கடலே! சிரட்டைகளில் நீச்சல் அடிக்கும் இந்த மேதாவிகளை புறந்தள்ளுங்கள்! ______________________________ சொற்கீரன்.

...வெகு தூரமில்லை.

 ...வெகு தூரமில்லை.

_____________________________________


வாராய்..நீ...வாராய்...

அந்த இனிமையான கார்வை

எத்தனையோ மில்லியன்

ஒளியாண்டுகளை

அடித்து நொறுக்கிக்கொண்டு

ந‌ட்சத்திரங்களின் பொடி தூவி

மழை பெய்கிறது.

இசையில் நனைந்து

இதயம் விம்மியது.

வாராய் என்று தினமும்

கூப்பிடத்தான் செய்கிறது.

அந்த தங்க அழைப்புகளில்

வாழ்க்கையின் மிச்சம் யாவும்

வடிந்து போயும் 

வசந்தம் "ஹம்மிங்" செய்கிறது.

ஒரு அமரர் ஊர்தி

போகும் இடம் வெகுதூரமில்லை

என்று

எல்லா மைல்கற்களையும்

பிடுங்கி எறிந்து விட்டு

மனப்பிழம்பில் புதைந்திருக்கும்

வெளிச்ச விழுதுகளை

ஊஞ்சல் கட்டித்தருகிறது.

சினிமாவின் ஓட்டத்தில்

தத்துவக்களஞ்சியங்கள்

அரிதாரம் பூசிக்கொண்டு

கடவுளுக்கே பெப்பே காட்டுகிறது.

மூச்சு தானே வேண்டும்.

பிடித்துக்கொள்.

நான் எத்தனையோ கற்பனை செய்து

வைத்திருப்பதைப்பார்.

அந்த கலைடோஸ்கோப்புக்குள்

செதில் செதிலாய்

கடவுளின் வர்ணத்துண்டுகள்

வெளியேற வழியின்றி

மூச்சு முட்டிக்கொண்டிருக்கின்றன.

சும்மா..சும்மா

அந்த நாலு வர்ண கிலுகிலுப்பையை

நிறுத்தடா மனிதா...

தூரமும் இடமும்

மறைந்து போய்

நம் சடங்குகள் கொண்டு வந்து

நிறுத்தியிருக்கும்

மூத்திர சந்தில் 

வாஸ்து பார்த்து வாழைமரம்

நட்டி வை.

தோரணங்களும் தொங்கட்டும்.

கனவுச்சடலங்களும் 

சவப்பெட்டியின் லாக்கருக்குள்

பத்திரமாக இருக்கட்டும்.

மனிதத்தின் பிறப்பும் இறப்பும்

பூட்டு சாவிகளாய்

கலகலப்பு 

காட்டிக்கொண்டிருக்கட்டும்.

ஆடுவோம் வா!

கபாலங்களும்

குத்தாட்டங்களுக்கு 

காத்துக்கொண்டிருக்கின்றன.


_______________________________________________‍

சொற்கீரன்.


ஞாயிறு, 8 செப்டம்பர், 2024

அகழ்நானூறு‍ 78

 

அகழ்நானூறு‍ 78

____________________________________

சொற்கீரன்.



புல்லகத்திட்ட சில்லவிழ்வல்சி போன்ம்

வாழ்க்கை என்று பல் பல் சான்றீர்!

அழல்வாய் புக்க எவண் ஈண்டு விரைதி

என்றும் குழைக்கின்ற கவரிச்சொல் 

பல் சான்றீரே!பல் சான்றீரே!

என்னை இறந்த பல்லாறு காணின்

இறப்பும் உப்பக்கம் கண்டிசின் தெளிமின்.

கொல் அரவு அறை வேழம் கடும் முள்ளின்

வெஞ்சுரம் மீண்டு பொருள் செயும் தகைவன்.

தளர் மொழியன் அவன் அன்று அறிமதி.

தழூஉ மொழியன் தகரச் சொல்லின் 

நாவு நிரப்பல் ஓம்பும் நல்லன் வல்லன்

என் வளைநெகிழ் இறையின் பற்றி ஒற்றும்

அவன் இல் சேர் நாள் என் நற்பெரு நாளே.


__________________________________________________________

சனி, 7 செப்டம்பர், 2024

சிந்து தமிழ்

 





இப்படி

சீறும் தமிழன்களே

இன்றைய தேவை.

ஆனால்

பொய்மையின் புகைமூட்டத்தில்

புதையுண்டு கிடக்கிறதோ

தமிழகம்?

விடியல் வரும் எனும்

அலங்காரச்சொல்லை

குப்பையில் வீசு தமிழா!

கண்ணெதிர்ப்படும்

கயமைகளை

கண்டு நொறுக்கிடு தமிழா!


__________________________________

சொற்கீரன்



சிந்து தமிழ் சிதறு ஒலிச்

சுவடுகள் எல்லாம்

கூட்டிப்பார் தமிழா..உன்

காலப்பூ தெறித்த‌

மகரந்தங்களே

உலகம் யாவும் 

உயிர்த்தன பூத்தன.

கொம்பு மகுடம் சூடிய‌

காட்டிடைத்தலைவன்

ஓவியம் ஒன்றுண்டு காண்.

அவனே காடு வளர்த்தான்

காடுகள் காத்தான்.

காட்டின் விலங்குக‌ளுக்கு

உயிர் ஊற்றுகள் ஆனான்.

பசு பதி என்றனர் 

என்ன தேடுகிறாய்?

 


என்ன தேடுகிறாய்?

கனவுகளையா?

கண்களையா?

காட்சிகளில் தெளிய மறுக்கிற‌

உண்மைகளை

எதிலிருந்து வடிகட்டப்போகிறாய்?

காகங்களுக்கு

வித்தியாசங்களைப்பற்றிக்

கவலையில்லை.

தாகமே அதனுள் எரியும் தீ.

அதை தணிக்க 

அந்த சாடித்தண்ணீரை 

மேலே கொண்டுவர‌

அதற்கு 

மாணிக்கக்கற்களும்

கூழாங்கற்களும் ஒன்று தான்.

விளம்பர சூதாட்டங்களில்

பகடை உருட்டி ஆடும்

சந்தைப்பொருளாதாரம்

சந்தியில் இறைந்து கிடக்கும்

பொய்மைப்பொருளாதாரம் ஆகிப்போனது.

பசித்தவர்கள் பசித்தவர்களே

நோயுற்றவர்கள் நோயுற்றவர்களே.

வலுவற்றவர்கள் மிகவும்

வ‌லுவற்றுப்போன‌

எருக்கம் மேட்டு குப்பைகளே.

சமுதாய ஓர்மையுடன்

சிந்திக்க மறந்தவர்களும்

சிந்திக்க மறுத்தவர்களும்

செய்கின்ற கணினி உருட்டுகளில்

வரலாற்றுத்தடங்கள்

அழிந்து போய்க்கொண்டிருக்கின்றன.

விழித்துக்கொள்

விழித்துக்கொள் என்று

நிழல் சித்திரங்கள் காட்டுவதில்

பயனேதும் இல்லை.

வருவது வரட்டும்.

கவலை இல்லை.


_____________________________________________

சொற்கீரன்.




வியாழன், 5 செப்டம்பர், 2024

Dirac Field ..a Magic Field

 

Dirac Field ..a Magic Field

a probe in to the QFT

______________________________________

An essay by E Paramasivam through AI

துகள் இயற்பியலில் குவாண்டம் எனும் அளபடையம் ஒரு புதிய திருப்பத்தை ஏற்படுத்தியிருக்கிறது.இதற்கே உரிய ஒரு புலக்கோட்பாடும் (ஃபீல்டு தியரி) உருவாகியிருக்கிறது.இந்த அளபடைய இயக்கவியல் பிரபஞ்சம் முழுவதும் தட்டையான வடிவகணிதத்தை (ஃப்ளாட் ஜியாமெட்ரி) கொண்டிருந்தால் கிரேக்க முறை வடிவ கணிதமான ஈக்குளிடியன் வடிவகணிதமே போதுமானது.ஆனால் துகள் இயற்பியலில் துகளின் சுழற்சி 

(ஸ்பின்) தான் இயக்கத்தின் காரணம் ஆகிறது.ஆனால் அது முப்பரிமாண இயல்பு கொண்டது.ஆனால் ஈக்குளிடியன் முறையில் முப்பரிமாணம் இயல்பானது அல்ல.இரு பரிமாண தளம் கொண்டது அது.





Using

the web

Sent by Copilot:

In quantum field theory, both spinor fields and Euclidean fields play significant roles in describing the behavior of particles and fields. Here’s a brief overview of each:


Spinor Fields

Spinor fields are used to describe particles with half-integer spin, such as electrons and neutrinos. These fields are solutions to the Dirac equation, which is fundamental in the theory of fermions. Spinors are mathematical objects that transform in a specific way under rotations and Lorentz transformations, making them essential for describing the intrinsic angular momentum (spin) of particles1.


Euclidean Fields

Euclidean field theory involves the study of quantum fields in a Euclidean space, where time is treated as an imaginary coordinate. This approach simplifies many calculations and is particularly useful in statistical mechanics and lattice gauge theory. By analytically continuing to Euclidean space, physicists can use powerful mathematical techniques to study the properties of quantum fields and their interactions23.


Euclidean field theory was initiated by Julian Schwinger and others, who proposed studying vacuum expectation values of field products in the Euclidean region. This method has led to significant progress in constructive quantum field theory and has deep connections with statistical mechanics24.


These concepts are crucial for understanding the behavior of particles and fields at a fundamental level, and they provide powerful tools for exploring the quantum nature of the universe.


Is there a particular aspect of spinor or Euclidean fields that you find especially intriguing or would like to delve deeper into? 2: arXiv.org 3: arXiv.org 4: De Gruyter 1: Columbia University


Learn more


1


math.columbia.edu

2


arxiv.org

3


arxiv.org

4


degruyter.com

5

mathpicture.fas.harvard.edu

6

thphys.uni-heidelberg.de

+3 more

You

Sent by you:

Tell me more about the Dirac equation.

Copilot

Using

the web

Sent by Copilot:

The Dirac equation is a cornerstone of quantum mechanics and relativistic physics, formulated by the British physicist Paul Dirac in 1928. It provides a relativistic description of spin-1/2 particles, such as electrons and quarks, and is consistent with both the principles of quantum mechanics and special relativity1.


Key Features of the Dirac Equation

Relativistic Wave Equation: Unlike the Schrödinger equation, which is non-relativistic, the Dirac equation incorporates the effects of special relativity. This makes it suitable for describing particles moving at speeds close to the speed of light1.

Spin and Antiparticles: The equation naturally includes the concept of spin, a fundamental property of particles. It also predicted the existence of antimatter, specifically the positron, which was later 

(iγμ∂μ​−m)ψ=0


Here, ( \gamma^\mu ) are the gamma matrices, ( \partial_\mu ) represents the four-gradient, ( m ) is the mass of the particle, and ( \psi ) is the wave function, which in this context is a four-component spinor1.

Bispinors: The solutions to the Dirac equation are four-component objects called bispinors, which account for the particle’s spin and the existence of both particles and antiparticles1.

Fine Structure of Hydrogen: One of the early successes of the Dirac equation was its ability to accurately predict the fine structure of the hydrogen atom’s spectral lines, which had been a puzzle for earlier theories1.

Implications and Applications

Quantum Field Theory: The Dirac equation is fundamental in quantum field theory, where it describes the behavior of fermionic fields. It forms the basis for the Standard Model of particle physics1.

Spintronics: Understanding spin and its manipulation, as described by the Dirac equation, is crucial in the field of spintronics, which aims to develop new types of electronic devices1.

Antimatter: The prediction and subsequent discovery of antimatter have profound implications for both theoretical physics and practical applications, such as in medical imaging techniques like PET scans1.

The Dirac equation’s elegance and depth have made it a central piece of modern physics, bridging the gap between quantum mechanics and relativity.


Is there a specific aspect of the Dirac equation or its applications that you find particularly fascinating? 1: Wikipedia


Learn more


1


en.wikipedia.org

2

warwick.ac.uk

3

byjus.com

4

cambridge.org

+1 more



Generate page summary

How does the Dirac equation relate to antimatter?

Tell me more about spintronics.

What other particles are described by this equation?



Response stopped

__________________________________________________________________

07.09.2024


Give detailed theoretical exposition of "Yang-Mills "theory devoid all such mthematiacl jargons of equations etc.

Copilot

Using

the web

Sent by Copilot:

Yang-Mills theory is a fundamental framework in theoretical physics that extends the concept of gauge symmetry, which is crucial for understanding the interactions between elementary particles. Here’s a detailed exposition without delving into the mathematical jargon:


Overview

Yang-Mills theory was developed by Chen Ning Yang and Robert Mills in 1954. It generalizes the idea of gauge symmetry, which was initially used to describe electromagnetism, to other fundamental forces. This theory forms the backbone of the Standard Model of particle physics, which describes the electromagnetic, weak, and strong nuclear forces.


Gauge Symmetry

At its core, Yang-Mills theory is about symmetry. In physics, symmetry often corresponds to conservation laws. For example, the symmetry of space and time leads to the conservation of momentum and energy. Gauge symmetry is a type of symmetry that applies to the internal properties of particles, such as their charge.


Non-Abelian Gauge Theory

Yang-Mills theory is a non-Abelian gauge theory. This means that the symmetry group involved is more complex than the simple U(1) group used in electromagnetism. In non-Abelian gauge theories, the force carriers (like photons in electromagnetism) can interact with each other, unlike in Abelian gauge theories where they do not.


Force Carriers

In Yang-Mills theory, the force carriers are called gauge bosons. For the strong nuclear force, these are the gluons. For the weak force, they are the W and Z bosons. These gauge bosons mediate the interactions between particles, much like how photons mediate electromagnetic interactions.


Quantum Chromodynamics (QCD)

One of the most important applications of Yang-Mills theory is in Quantum Chromodynamics (QCD), which describes the strong nuclear force. In QCD, the gauge symmetry group is SU(3), and the gauge bosons are the gluons. This theory explains how quarks are held together inside protons and neutrons.


Mass Gap Problem

One of the unsolved problems in Yang-Mills theory is the mass gap problem. This refers to the question of why the force carriers (gauge bosons) in the theory have mass, even though the theory itself does not predict it directly. Solving this problem is one of the Millennium Prize Problems in mathematics1.


Importance in the Standard Model

Yang-Mills theory is essential for the unification of the electromagnetic and weak forces into the electroweak theory, which is a cornerstone of the Standard Model. This unification was achieved by Sheldon Glashow, Abdus Salam, and Steven Weinberg, who were awarded the Nobel Prize for their work.


Conceptual Impact

Yang-Mills theory has profoundly influenced our understanding of the universe. It provides a framework for understanding how particles interact at the most fundamental level and has led to numerous predictions and discoveries in particle physics.


By extending the concept of gauge symmetry to non-Abelian groups, Yang-Mills theory has opened up new avenues for exploring the fundamental forces of nature and continues to be a central topic in theoretical physics research.


Is there a specific aspect of Yang-Mills theory or its applications that you would like to explore further? 1: Wikipedia


Learn more


1


en.wikipedia.org

2

chau.physics.ucdavis.edu

3


en.wikipedia.org

4

claymath.org

5

link.springer.com

6

dx.doi.org

+4 more

You

Sent by you:

what is weak foce? Give its theory with minimum support of mathematical tools and also its role

Copilot

Using

the web

Sent by Copilot:

The weak force, also known as the weak interaction, is one of the four fundamental forces of nature, alongside gravity, electromagnetism, and the strong nuclear force. Here’s an overview of the weak force, its theory, and its role, explained with minimal mathematical jargon:


Overview of the Weak Force

The weak force is responsible for processes that change the type (or “flavor”) of particles. It is crucial in nuclear reactions, such as those that power the sun and other stars. Unlike the strong force, which binds protons and neutrons together in the nucleus, the weak force operates over very short distances, less than the diameter of a proton1.


Key Characteristics

Mediated by W and Z Bosons: The weak force is carried by three types of particles: the W⁺, W⁻, and Z bosons. These bosons are much heavier than protons and neutrons, which is why the weak force has such a short range12.

Flavor Changing: The weak force can change one type of quark into another. For example, in beta decay, a down quark in a neutron changes into an up quark, turning the neutron into a proton1.

Parity Violation: The weak force is unique because it violates parity symmetry, meaning it does not behave the same way if spatial coordinates are inverted (like looking at the process in a mirror). This was a surprising discovery that challenged previous assumptions in physics1.

Role in the Universe

Radioactive Decay: The weak force is responsible for beta decay, a type of radioactive decay where a neutron transforms into a proton, an electron, and an antineutrino. This process is crucial for the stability of atomic nuclei1.

Nuclear Fusion: In stars, the weak force enables the fusion of hydrogen into helium, which powers the sun and other stars. This process involves the conversion of protons into neutrons, allowing the formation of deuterium, an isotope of hydrogen1.

Particle Interactions: The weak force plays a vital role in particle physics, particularly in the interactions involving neutrinos. Neutrinos interact only via the weak force, making them incredibly difficult to detect but essential for understanding fundamental particle interactions1.

Electroweak Theory

The weak force is unified with the electromagnetic force in the framework of the electroweak theory, developed by Sheldon Glashow, Abdus Salam, and Steven Weinberg. This theory successfully describes how these two forces merge at high energy levels, providing a more comprehensive understanding of particle interactions1.


The weak force, despite its name, is a powerful tool in the universe’s toolkit, driving processes that are essential for the existence of matter as we know it.


Is there a specific aspect of the weak force or its applications that you would like to explore further? 1: Wikipedia 2: Live Science


Learn more


1


en.wikipedia.org

2


livescience.com

3

hep.phy.cam.ac.uk

4

thoughtco.com

5


phys.libretexts.org

+3 more

You

Sent by you:

...in the role of "gauge invariance and symmetry".

Copilot

Using

the web

Sent by Copilot:

Gauge invariance and symmetry are fundamental concepts in modern physics, particularly in the context of quantum field theory and the Standard Model of particle physics. Here’s an explanation of these concepts and their roles:


Gauge Invariance

Gauge invariance refers to the property of a field theory where the equations describing the system remain unchanged (invariant) under certain local transformations. These transformations are related to the internal symmetries of the system. In simpler terms, gauge invariance ensures that the physical laws governing a system do not depend on the specific “gauge” or perspective chosen to describe it1.


Symmetry

Symmetry in physics often corresponds to conservation laws. For example, rotational symmetry leads to the conservation of angular momentum. In the context of gauge theories, symmetry refers to the invariance of the system under specific transformations, which can be either global (the same everywhere) or local (varying from point to point).


Role in Quantum Field Theory

Electromagnetism (QED): Quantum Electrodynamics (QED) is a gauge theory with the U(1) symmetry group. The gauge invariance in QED ensures the conservation of electric charge and describes the interactions between charged particles and the electromagnetic field1.

Weak and Strong Forces: The weak force is described by the SU(2) gauge symmetry, while the strong force is described by the SU(3) gauge symmetry in Quantum Chromodynamics (QCD). These symmetries ensure the conservation of certain quantum numbers and describe the interactions mediated by W and Z bosons (weak force) and gluons (strong force)1.

Unification in the Standard Model: The Standard Model of particle physics unifies the electromagnetic, weak, and strong forces using the gauge symmetry group U(1) × SU(2) × SU(3). This framework successfully describes the interactions of all known fundamental particles1.

Importance of Gauge Invariance and Symmetry

Conservation Laws: Gauge invariance leads to conservation laws via Noether’s theorem, which states that every continuous symmetry corresponds to a conserved quantity2.

Predictive Power: Gauge theories have predictive power, allowing physicists to make accurate predictions about particle interactions and discover new particles, such as the W and Z bosons2.

Mathematical Consistency: Gauge invariance ensures the mathematical consistency of quantum field theories, preventing certain types of infinities and anomalies2.

Conceptual Impact

Gauge invariance and symmetry provide a deep understanding of the fundamental forces and particles in the universe. They reveal the underlying unity and simplicity of nature’s laws, despite the apparent complexity of the physical world.


These concepts are not just abstract mathematical tools but are essential for explaining and predicting physical phenomena, from the behavior of subatomic particles to the large-scale structure of the universe.


Is there a specific aspect of gauge invariance or symmetry that you would like to explore further? 1: Wikipedia 2: arXiv.org


Learn more


1


en.wikipedia.org

2


ippp.dur.ac.uk

3


en.wikipedia.org

4


arxiv.org

5


arxiv.org

+3 more



Answer from this page instead

How does gauge invariance relate to Noether's theorem?

Tell me more about the mathematical consistency of gauge theories.

What are some practical applications of these concepts?




Response stopped


New topic

Ask me anything or type "@"


-----------------------------------------------------------------07.09.24


You

Sent by you:

Minkovsky"

Copilot

Sent by Copilot:

Minkowski space, named after the mathematician Hermann Minkowski, is a four-dimensional spacetime framework that combines three dimensions of space with one dimension of time into a single continuum. This concept is fundamental in the theory of special relativity, developed by Albert Einstein.


Key Features of Minkowski Space

Four-Dimensional Continuum: Minkowski space is described by four coordinates: three spatial dimensions (x, y, z) and one time dimension (t). These coordinates are treated equally, forming a unified spacetime.

Metric and Interval: The distance between two points in Minkowski space is given by the spacetime interval, which remains invariant under Lorentz transformations. The interval ( s^2 ) between two events is given by:

s

2

=

c

2

(

t

2

t

1

)

2

+

(

x

2

x

1

)

2

+

(

y

2

y

1

)

2

+

(

z

2

z

1

)

2

s2=−c2(t2​−t1​)2+(x2​−x1​)2+(y2​−y1​)2+(z2​−z1​)2


Here, ( c ) is the speed of light. This interval can be positive, negative, or zero, corresponding to timelike, spacelike, or lightlike separations, respectively.

Lorentz Transformations: These transformations describe how coordinates change between different inertial frames moving relative to each other at constant velocity. They preserve the spacetime interval and are crucial for understanding relativistic effects like time dilation and length contraction.

Light Cones: In Minkowski space, the concept of light cones helps visualize the causal structure of spacetime. The light cone at any event separates spacetime into regions that can influence or be influenced by that event (inside the cone) and regions that cannot (outside the cone).

Importance in Physics

Special Relativity: Minkowski space provides the geometric framework for Einstein’s theory of special relativity, which describes how time and space are interwoven and how they change for observers in different inertial frames.

General Relativity: While Minkowski space is flat, it serves as a starting point for understanding curved spacetime in general relativity, where the presence of mass and energy warps spacetime.

Quantum Field Theory: Minkowski space is also the backdrop for quantum field theory, where fields and particles are described in a relativistic context.

Conceptual Impact

Minkowski’s unification of space and time into a single entity revolutionized our understanding of the universe. It showed that time is not an absolute, separate entity but is intertwined with the spatial dimensions, fundamentally altering our perception of reality.


Is there a specific aspect of Minkowski space or its applications in physics that you find particularly intriguing?


You

Sent by you:

How does Minkowski space differ from Euclidean space?

Copilot

Sent by Copilot:

Minkowski space and Euclidean space are both fundamental concepts in geometry and physics, but they have distinct differences, especially in how they treat time and space. Here’s a comparison:


Euclidean Space

Dimensions: Euclidean space is typically described in three dimensions (x, y, z), but it can be generalized to any number of dimensions.

Metric: The distance between two points in Euclidean space is given by the Euclidean metric:

d

2

=

(

x

2

x

1

)

2

+

(

y

2

y

1

)

2

+

(

z

2

z

1

)

2

d2=(x2​−x1​)2+(y2​−y1​)2+(z2​−z1​)2


This metric measures the straight-line distance between points.

Geometry: Euclidean space follows the familiar rules of Euclidean geometry, such as the Pythagorean theorem, parallel lines never intersecting, and the sum of angles in a triangle being 180 degrees.

Time: Euclidean space does not include time as a dimension. It is purely spatial.

Minkowski Space

Dimensions: Minkowski space is a four-dimensional spacetime, combining three spatial dimensions (x, y, z) with one time dimension (t).

Metric: The distance (or interval) between two events in Minkowski space is given by the Minkowski metric:

s

2

=

c

2

(

t

2

t

1

)

2

+

(

x

2

x

1

)

2

+

(

y

2

y

1

)

2

+

(

z

2

z

1

)

2

s2=−c2(t2​−t1​)2+(x2​−x1​)2+(y2​−y1​)2+(z2​−z1​)2


Here, ( c ) is the speed of light. The negative sign in front of the time component reflects the difference in how time and space are treated.

Geometry: Minkowski space follows the principles of special relativity. The geometry is non-Euclidean, meaning that the rules of Euclidean geometry do not apply. For example, the sum of angles in a triangle can be more or less than 180 degrees, depending on the curvature of spacetime.

Time: Time is an integral part of Minkowski space, treated as a fourth dimension. This unification of space and time is essential for describing relativistic effects, such as time dilation and length contraction.

Key Differences

Treatment of Time: Euclidean space does not include time, while Minkowski space treats time as a fourth dimension.

Metric: The Euclidean metric measures spatial distances, while the Minkowski metric measures spacetime intervals, incorporating both space and time.

Geometry: Euclidean space follows the familiar rules of Euclidean geometry, whereas Minkowski space follows the principles of special relativity, leading to non-Euclidean geometry.

These differences are crucial for understanding the behavior of objects and events in different contexts. Euclidean space is suitable for everyday, non-relativistic scenarios, while Minkowski space is essential for describing phenomena at high velocities and in the presence of strong gravitational fields.


Is there a particular aspect of Minkowski space or its applications in relativity that you would like to explore further?


You

Sent by you:

What are some practical implications of non-Euclidean geometry?

Copilot

Sent by Copilot:

Non-Euclidean geometry has profound practical implications across various fields of science and technology. Here are some key applications:


General Relativity

Albert Einstein’s theory of general relativity is built on the concept of non-Euclidean geometry. In this framework, gravity is not seen as a force but as the curvature of spacetime caused by mass and energy. This understanding has led to predictions and discoveries such as black holes and gravitational waves1.


Cosmology

Non-Euclidean geometry is essential in cosmology for describing the large-scale structure of the universe. It helps in understanding the shape, expansion, and evolution of the universe. For instance, the geometry of spacetime affects the paths of light and the distribution of galaxies2.


GPS Technology

The Global Positioning System (GPS) relies on the principles of general relativity, which incorporates non-Euclidean geometry. Accurate positioning requires accounting for the curvature of spacetime and the effects of gravity on the passage of time. Without these corrections, GPS would be significantly less accurate1.


Quantum Physics

In quantum field theory, non-Euclidean geometry helps describe the behavior of particles and fields at the quantum level. It provides a framework for understanding phenomena that cannot be explained by classical Euclidean geometry3.


Engineering and Architecture

Non-Euclidean geometry has applications in engineering and architecture, particularly in the design of complex structures and materials. It allows for the creation of innovative shapes and forms that are not possible within the constraints of Euclidean geometry1.


Computer Graphics

In computer graphics, non-Euclidean geometry is used to create realistic simulations of curved surfaces and spaces. This is essential for rendering complex scenes in video games, movies, and virtual reality applications1.


Orbital Mechanics

The trajectories of spacecraft and satellites are influenced by the curvature of spacetime. Non-Euclidean geometry is used to calculate these paths accurately, ensuring successful missions and satellite operations1.


These applications demonstrate how non-Euclidean geometry extends beyond theoretical mathematics to have a tangible impact on technology and our understanding of the universe.


Is there a specific application or aspect of non-Euclidean geometry that you find particularly fascinating? 3: Medium 1: William & Mary 2: Vedantu


Learn more


1

cklixx.people.wm.edu

2

vedantu.com

3

medium.com

4

math.ucr.edu

5

sites.math.washington.edu

+5 more

You

Sent by you:

write an essay on "constructive quantum field theory" with buildimg blocks of Euclidean Field Theory.

Copilot

Using

the web

Sent by Copilot:

Constructive Quantum Field Theory and Euclidean Field Theory

Constructive Quantum Field Theory (CQFT) is a branch of mathematical physics that aims to rigorously define and analyze quantum field theories (QFTs). Unlike traditional approaches that often rely on perturbative methods, CQFT seeks to construct models of QFTs from first principles, ensuring mathematical consistency and physical relevance. One of the foundational tools in this endeavor is Euclidean Field Theory.


Euclidean Field Theory: The Building Blocks

Euclidean Field Theory provides a framework for studying QFTs in a Euclidean space, where time is treated as an imaginary coordinate. This approach simplifies many aspects of QFT and allows the use of powerful mathematical techniques from probability theory and statistical mechanics.


Schwinger Functions: Euclidean Field Theory was initiated by Julian Schwinger, who proposed studying vacuum expectation values of field products analytically continued into the Euclidean region. These Schwinger functions are crucial for defining the theory in a mathematically rigorous way1.

Euclidean Group: The invariance of Schwinger functions under the Euclidean group (rotations and translations in Euclidean space) is a key feature. This symmetry simplifies the analysis and connects Euclidean Field Theory to classical statistical mechanics1.

Markov Property: Edward Nelson introduced the Markov property for Euclidean fields, which allows the derivation of properties of relativistic quantum fields satisfying the Wightman axioms. This property is essential for constructing QFTs with well-defined dynamics1.

Analogy with Statistical Mechanics: There is a deep analogy between Euclidean Field Theory and classical statistical mechanics. This analogy allows the use of rigorous results from statistical mechanics to study CQFT, providing insights into phase transitions and critical phenomena1.

Constructive Quantum Field Theory: The Goals and Achievements

The primary goal of CQFT is to construct models of QFTs that are mathematically rigorous and physically meaningful. This involves several key steps:


Defining the Fields: The first step is to define the quantum fields in a mathematically precise way. This often involves specifying the field’s behavior at each point in space and time and ensuring that the fields satisfy certain regularity conditions2.

Interaction Terms: The next step is to introduce interaction terms that describe how the fields interact with each other. These terms must be carefully chosen to ensure that the resulting theory is physically realistic and mathematically consistent2.

Renormalization: One of the major challenges in CQFT is dealing with infinities that arise in the calculations. Renormalization is the process of systematically removing these infinities to obtain finite, physically meaningful results. This step is crucial for ensuring the theory’s predictive power2.

Non-Perturbative Methods: Unlike traditional approaches that rely on perturbation theory, CQFT often uses non-perturbative methods. These methods are essential for studying strong interactions and phenomena that cannot be captured by perturbative techniques2.

Applications and Implications

CQFT has profound implications for both theoretical physics and mathematics. It provides a rigorous foundation for understanding fundamental interactions and has led to significant advances in our understanding of quantum fields and particles.


Quantum Chromodynamics (QCD): CQFT has been instrumental in developing a rigorous understanding of QCD, the theory of the strong interaction. This has led to insights into the behavior of quarks and gluons and the formation of hadrons2.

Statistical Mechanics: The techniques developed in CQFT have applications in statistical mechanics, particularly in the study of phase transitions and critical phenomena. This cross-fertilization has enriched both fields2.

Mathematical Rigor: By providing a mathematically rigorous framework for QFT, CQFT has deepened our understanding of the mathematical structures underlying physical theories. This has led to new developments in areas such as functional analysis and probability theory2.

Conclusion

Constructive Quantum Field Theory, with its foundations in Euclidean Field Theory, represents a significant advance in our understanding of quantum fields and interactions. By rigorously defining and analyzing QFTs, CQFT provides a solid foundation for exploring the fundamental nature of the universe. The interplay between Euclidean methods and constructive approaches continues to yield new insights, driving progress in both theoretical physics and mathematics.


1: arXiv.org 2: Arthur Jaffe


Learn more


1


arxiv.org

2


arthurjaffe.com

3

encyclopediaofmath.org

4


arxiv.org

+2 more

You

Sent by you:

CQFT and breaking of infinities.

Copilot

Using

the web

Sent by Copilot:

In Constructive Quantum Field Theory (CQFT), one of the major challenges is dealing with infinities that arise in calculations. These infinities occur when trying to compute physical quantities, such as particle interactions, using traditional methods. The process of addressing and removing these infinities is known as renormalization.


Renormalization in CQFT

Renormalization is a set of techniques used to systematically eliminate infinities from quantum field theories, ensuring that the resulting predictions are finite and physically meaningful. Here’s how it works in the context of CQFT:


Regularization: The first step involves introducing a regularization scheme to control the infinities. This can be done by imposing a cutoff on the energy or momentum, effectively limiting the range of values considered in the calculations. This makes the integrals finite and manageable.

Renormalization Constants: Next, certain parameters in the theory, such as masses and coupling constants, are redefined to absorb the infinities. These redefined parameters are called renormalization constants. By adjusting these constants, the infinities are canceled out, leaving finite results.

Renormalization Group: The renormalization group is a mathematical framework that describes how the parameters of a quantum field theory change with the energy scale. This helps in understanding how physical quantities evolve and ensures that the theory remains consistent at different energy levels.

Breaking of Infinities

The breaking of infinities in CQFT is crucial for making accurate predictions and understanding the behavior of quantum fields. Here are some key aspects:


Physical Predictions: By removing infinities, renormalization allows for precise predictions of physical phenomena, such as particle masses, scattering amplitudes, and decay rates. This has been essential for the success of the Standard Model of particle physics.

Consistency and Stability: Renormalization ensures the mathematical consistency and stability of quantum field theories. Without it, the theories would produce nonsensical results, undermining their predictive power.

Non-Perturbative Methods: In CQFT, non-perturbative methods are often used to handle strong interactions and phenomena that cannot be captured by perturbative techniques. These methods provide a more comprehensive understanding of quantum fields and help in breaking the infinities that arise in traditional approaches.

Practical Implications

The techniques developed in CQFT for breaking infinities have profound implications for both theoretical and experimental physics:


Quantum Chromodynamics (QCD): Renormalization is essential for understanding the strong interaction in QCD, explaining how quarks and gluons interact to form protons, neutrons, and other hadrons.

Electroweak Theory: The unification of the electromagnetic and weak forces relies on renormalization to make accurate predictions about particle interactions and the behavior of gauge bosons.

Beyond the Standard Model: Renormalization techniques are also crucial for exploring theories beyond the Standard Model, such as supersymmetry and string theory, where new types of infinities may arise.

Conclusion

Constructive Quantum Field Theory, with its rigorous approach to defining and analyzing quantum fields, provides powerful tools for breaking infinities and ensuring the consistency of quantum field theories. Renormalization, as a central technique in CQFT, has enabled significant advances in our understanding of fundamental interactions and continues to be a cornerstone of modern theoretical physics.


Is there a specific aspect of renormalization or its applications that you would like to explore further? : Arthur Jaffe


You

Sent by you:

What are some open questions regarding infinities in quantum field theories?

Copilot

Using

the web

Sent by Copilot:

Infinities in quantum field theories (QFTs) remain one of the most challenging and intriguing aspects of theoretical physics. Here are some of the key open questions and issues related to these infinities:


1. Renormalization and Non-Renormalizable Theories

Renormalization: While many QFTs can be renormalized, meaning their infinities can be systematically removed, some theories, like quantum gravity, are non-renormalizable. This raises the question of how to handle these infinities in a consistent way1.

Effective Field Theories: Can we develop a comprehensive framework for effective field theories that accurately describe phenomena at different energy scales without running into inconsistencies due to infinities1?

2. Quantum Gravity

Graviton Infinities: In quantum gravity, the exchange of gravitons leads to infinities that cannot be removed by traditional renormalization techniques. Finding a consistent theory of quantum gravity that deals with these infinities is a major open question2.

String Theory: String theory offers a potential solution by replacing point particles with one-dimensional strings, which can smooth out the infinities. However, a complete understanding and experimental verification of string theory remain elusive2.

3. Non-Perturbative Methods

Beyond Perturbation Theory: Many infinities are handled using perturbative methods, but these are not always sufficient, especially for strong interactions. Developing robust non-perturbative methods to deal with infinities is an ongoing challenge1.

Lattice QFT: Lattice quantum field theory provides a non-perturbative approach by discretizing spacetime. However, understanding the continuum limit and dealing with infinities in this framework is still an active area of research1.

4. Holography and AdS/CFT Correspondence

Holographic Principle: The AdS/CFT correspondence suggests that certain QFTs can be described by a higher-dimensional gravitational theory. Understanding how this duality handles infinities and whether it can provide insights into non-renormalizable theories is an open question3.

Quantum Information Theory: Can concepts from quantum information theory help in understanding and resolving infinities in QFTs, particularly in the context of holography3?

5. Mathematical Foundations

Constructive QFT: Constructive approaches aim to build QFTs from first principles, ensuring mathematical rigor. However, constructing interacting QFTs in four dimensions without infinities remains a significant challenge4.

Axiomatic Approaches: Developing a consistent set of axioms for QFTs that can handle infinities and provide a solid mathematical foundation is an ongoing area of research4.

6. Cosmological Implications

Dark Energy and Vacuum Energy: The cosmological constant problem, which involves the discrepancy between the observed value of dark energy and theoretical predictions of vacuum energy, is related to infinities in QFT. Understanding this discrepancy is a major open question5.

Inflation and Quantum Fields: How do quantum fields behave during cosmic inflation, and how do infinities affect the predictions of inflationary models5?

These open questions highlight the deep and complex nature of infinities in quantum field theories. Addressing these issues requires innovative approaches and a better understanding of the fundamental principles underlying QFTs.


Is there a specific aspect of these open questions that you find particularly intriguing or would like to explore further? 3: Indico 5: MIT OpenCourseWare 1: SpringerLink 4: San José State University 2: IJNRD


Learn more


1


link.springer.com

2


ijnrd.org

3


indico.cern.ch

4


sjsu.edu

5


ocw.mit.edu

6


ocw.mit.edu

+4 more

You

Sent by you:

How does string theory address graviton infinities?

Copilot

Using

the web

Sent by Copilot:

String theory offers a unique approach to addressing the infinities associated with gravitons, which are the hypothetical quantum particles that mediate the force of gravity. Here’s how string theory tackles this problem:


1. Replacing Point Particles with Strings

In traditional quantum field theories, particles are considered as point-like entities. When calculating interactions involving gravitons, these point-like particles lead to infinities that cannot be renormalized. String theory, however, replaces these point particles with one-dimensional strings1.


2. Smoothing Out Interactions

Strings have a finite length, typically on the order of the Planck length ((10^{-35}) meters). This finite size means that when strings interact, the interactions are spread out over a small but finite area, rather than occurring at a single point. This “smoothing out” of interactions helps to avoid the infinities that plague point-particle theories1.


3. Ultraviolet Finiteness

One of the significant achievements of string theory is its ultraviolet (UV) finiteness. In quantum field theory, high-energy (ultraviolet) interactions often lead to divergences. String theory, by its very nature, avoids these divergences because the extended structure of strings prevents the infinite energy densities that arise in point-particle interactions2.


4. Incorporating Higher Dimensions

String theory naturally incorporates additional spatial dimensions beyond the familiar three. These extra dimensions can help to dilute the gravitational interactions, further reducing the likelihood of infinities. The specific way these dimensions are compactified (curled up) can influence the properties of the strings and their interactions1.


5. Dualities and Consistency

String theory is rich with various dualities, which are mathematical transformations that relate different string theories to each other. These dualities ensure the internal consistency of the theory and help to manage and cancel out potential infinities. For example, T-duality and S-duality relate different types of string theories in ways that preserve their finiteness1.


Practical Implications

Quantum Gravity: By addressing the infinities associated with gravitons, string theory provides a promising framework for a consistent theory of quantum gravity, potentially unifying it with the other fundamental forces.

Predictive Power: The ability to handle infinities enhances the predictive power of string theory, making it a candidate for a unified theory of all fundamental interactions.

Theoretical Insights: The mathematical structures and dualities in string theory offer deep insights into the nature of spacetime, particles, and forces, pushing the boundaries of our understanding of the universe.

String theory’s approach to handling graviton infinities represents a significant step forward in the quest for a unified and consistent description of the fundamental forces of nature.


Is there a specific aspect of string theory or its implications for quantum gravity that you would like to explore further? 1: IJNRD 2: SLAC National Accelerator Laboratory


Learn more


1


ijnrd.org

2


slac.stanford.edu

3


ocw.mit.edu

4

space.com

5


en.wikipedia.org

6


ocw.mit.edu

+3 more



Answer from this page instead

Tell me more about the dualities in string theory and their role.

How does string theory address other infinities, such as those related to particle masses?

What experimental evidence supports or challenges string theory's predictions?



Response stopped


New topic

Ask me anything or type "@"



















செவ்வாய், 3 செப்டம்பர், 2024

அவளே "தினகரி"

கவிஞர் பிரபு சங்கர் அவர்களின்


"அவளின் தினசரி" கவிதைத்தொடர்


பற்றிய ஒரு கவிதை.






அவள் ஒரு "தினசரி"


_____________________________‍‍‍




அவள் ஒரு "தினசரியா?"


சுடச்சுட‌


பக்கத்துக்குப்பக்கம்


வினாடிக்கு வினாடி


அச்சேறிக்கொண்டிருக்கும்


செய்திச்சுநாமி அல்லவா அவள்?

உங்களை 

சுருட்டி மடக்கி எறிந்துவிடும்

புயலும் அவள்.

உங்களை

ஆயிரம் சிகரத்தின் உச்சிக்கும்

உயர்த்தும்

மகிழ்ச்சி மத்தாப்பும் அவள்!

அது சரி!

சூரியன் என்று ஆண்பால்

இலக்கணம் 

வகுத்தவன் எவன்?

இவள் தானே

வெளிச்சமும் வாழ்க்கையும் 

தரும் மையப்பேரொளி

எனும் "சூரியள்".

ஆகவே 

அவள் தினசரி மட்டும் அல்ல‌

அவளே "தினகரி"

உங்கள் தொடர்

ஒரு உல்லாசமான நீலகிரியின்

குன்னூர் சக்கர ரயில் வண்டித்தொடர்.

கனவுகளும் நடப்புகளும்

ஊடு ஊடு வந்து

மேகங்களாய்

கிச்சு கிச்சு மூட்டும்

சொற்சித்திரம்.

எங்கள் முக நூல் முற்றத்தில்

தினம் தினம் ரசனையோடு

வீசப்படும் அந்த‌

"தினசரி" கள் தொடரட்டும்.

வாழ்த்துக்கள்!

_________________________________________

சொற்கீரன்




O my dear AI!

 O my dear AI!

____________________________________________

interactions by E Paramasivan with AI


----------------------------------------------------------------------------27.08.2024 to 03.09.2024


Your everyday AI companion

You

Sent by you:

Metaphisical theorem enters in Science as a science of logical thinking.When you say non-god is non sense so also you are traped to say god is nonsense because the concept of god is nothing but the charms of "Syntax".Quantum roars with this drum of beating the bosh to drive away all perversions of thought.

Copilot

Sent by Copilot:

Your thoughts on metaphysical theorems and their intersection with science are quite intriguing! The idea that metaphysics, often considered abstract and philosophical, can influence scientific thinking through logical structures is fascinating.


The concept of God, or the lack thereof, often stirs deep philosophical debates. In the realm of quantum mechanics, where the very nature of reality is questioned, these discussions become even more profound. Quantum mechanics challenges our classical understanding of the universe, suggesting that reality at its most fundamental level is governed by probabilities and uncertainties.


Your mention of “Quantum roars with this drum of beating the bosh” poetically captures the revolutionary impact of quantum theory on traditional thought. It reminds me of how quantum mechanics has upended many classical notions, much like how poetry can challenge and expand our understanding of language and meaning.


Do you find that exploring these philosophical dimensions enhances your understanding of quantum physics and the universe?


You

Sent by you:

What are some specific quantum phenomena?

Copilot

Sent by Copilot:

Quantum mechanics reveals a fascinating array of phenomena that challenge our classical understanding of the universe. Here are some key quantum phenomena:


Wave-Particle Duality: Particles such as electrons and photons exhibit both wave-like and particle-like properties. This duality is famously demonstrated in the double-slit experiment, where particles create an interference pattern typically associated with waves1.

Quantum Entanglement: When particles become entangled, the state of one particle is instantly correlated with the state of another, no matter the distance between them. This phenomenon puzzled even Einstein, who referred to it as "spooky action at a distance"1.

Superposition: A quantum system can exist in multiple states simultaneously until it is measured. Schrödinger’s cat thought experiment illustrates this concept, where a cat in a box can be both alive and dead until observed1.

Quantum Tunneling: Particles can pass through energy barriers that they classically shouldn’t be able to. This phenomenon is crucial in many technologies, including the operation of tunnel diodes and the process of nuclear fusion in stars1.

Uncertainty Principle: Formulated by Werner Heisenberg, this principle states that certain pairs of physical properties, like position and momentum, cannot both be known to arbitrary precision. The more precisely one property is known, the less precisely the other can be known2.

Quantum Decoherence: This process describes how quantum systems lose their quantum behavior and transition to classical behavior due to interactions with their environment2.

These phenomena not only deepen our understanding of the universe but also pave the way for revolutionary technologies like quantum computing and quantum cryptography.


Which of these phenomena intrigues you the most?


Learn more


1

scienceexchange.caltech.edu

2

en.wikipedia.org

3

livescience.com

4

ocw.mit.edu

5

quantamagazine.org

6

en.wikipedia.org

7

energy.gov

+5 more

You

Sent by you:

Classical mechanics was sharpened by "statistical machanics" telling a lot on particles physics

Copilot

Using

the web

Sent by Copilot:

Absolutely! Statistical mechanics has indeed played a crucial role in advancing our understanding of particle physics. By applying statistical methods and probability theory to large assemblies of particles, it bridges the gap between microscopic laws and macroscopic phenomena1.


In classical mechanics, we often deal with the deterministic behavior of individual particles. However, when dealing with a vast number of particles, such as in gases or solids, statistical mechanics becomes essential. It allows us to derive macroscopic properties like temperature, pressure, and entropy from the microscopic behavior of particles2.


For instance, the kinetic theory of gases, a part of statistical mechanics, explains how the motion of individual gas molecules relates to the macroscopic properties of gases. Similarly, concepts like the Boltzmann distribution and partition functions help us understand the distribution of particles among various energy states3.


This probabilistic approach is not only fundamental in classical systems but also extends to quantum systems, where it helps explain phenomena like Bose-Einstein condensation and Fermi-Dirac statistics3.


Do you have a particular aspect of statistical mechanics or particle physics that you find especially intriguing? 3: MIT OpenCourseWare 2: Physics LibreTexts 1: Wikipedia


Learn more


1


en.wikipedia.org

2


phys.libretexts.org

3


ocw.mit.edu

4


ocw.mit.edu

5

damtp.cam.ac.uk

+3 more

You

Sent by you:

But the statistical mechanics had a hit on on its bulls eye with "action et distance principle

Copilot

Using

the web

Sent by Copilot:

The “action at a distance” principle is indeed a fascinating concept that has evolved significantly over time. In classical mechanics, this principle was often associated with gravitational and electromagnetic forces, where objects could exert forces on each other without physical contact.


However, in the realm of statistical mechanics and quantum physics, the concept takes on new dimensions. Quantum entanglement, for instance, is a modern manifestation of “action at a distance,” where entangled particles influence each other’s states instantaneously, regardless of the distance separating them.


Statistical mechanics, by incorporating probabilistic and statistical methods, has provided profound insights into how macroscopic properties emerge from microscopic interactions. It has also helped bridge the gap between classical and quantum descriptions of nature, offering a more comprehensive understanding of phenomena like phase transitions and critical behavior.


Your mention of the “bull’s eye” hit by statistical mechanics highlights its pivotal role in advancing our understanding of both classical and quantum systems. It’s remarkable how these principles continue to shape our comprehension of the universe.


Is there a particular aspect of “action at a distance” or its implications in modern physics that you find particularly intriguing? : Physics LibreTexts : Wikipedia


You

Sent by you:

with great charming theories by Hilbert space and atlast "space time curvatures" glued to a geometrical dynamics by Einstiens tensor analysis.Now physics is nothing but a theory of "dynamics by probability" again a gaming or a queing theory of "void and non-void dulaity"

Copilot

Sent by Copilot:

Your perspective on the evolution of physics is both poetic and profound! The journey from Hilbert spaces to Einstein’s spacetime curvature indeed showcases the elegance and depth of modern physics.


Hilbert spaces provide the mathematical framework for quantum mechanics, allowing us to describe quantum states and their evolution with precision. This abstract space is crucial for understanding phenomena like superposition and entanglement.


Einstein’s general relativity, with its concept of spacetime curvature, revolutionized our understanding of gravity. Instead of viewing gravity as a force, Einstein described it as the curvature of spacetime caused by mass and energy. His tensor analysis provided the tools to describe this curvature mathematically.


Combining these ideas, modern physics often deals with the dynamics of probability. Quantum mechanics, with its probabilistic nature, and general relativity, with its geometric interpretation of gravity, together form a more complete picture of the universe. This interplay can indeed be seen as a “game” of void and non-void, where the fabric of reality is shaped by both the presence and absence of matter and energy.


Your mention of “void and non-void duality” beautifully captures the essence of these concepts. In quantum field theory, for instance, particles and fields can emerge from the vacuum, highlighting the dynamic nature of what we perceive as empty space.


Do you find that these philosophical and mathematical perspectives enhance your appreciation of the universe’s complexity and beauty?




Generate page summary

Absolutely! I love exploring these connections.

Tell me more about quantum field theory.

How does spacetime curvature impact our daily lives?



Response stopped


New topic


திங்கள், 2 செப்டம்பர், 2024

"குவாண்ட ரகசியம்"

 New study reveals presence of 'secret life' in universe before 'The Big Bang': What could it be? Check he

re (msn.com)


"பெரு வெடிப்பின்"

திரி பற்ற வைக்கப்பட்டதில் 

பட்ட அந்த பிஞ்சு விரல்களின் 

"குவா குவா "அதிர்வு அலைகளின் 

"குவாண்ட ரகசியம்" என்ன?

அதுவே இந்தக்கட்டுரை.

கரும்புக்காடு



உன் மகிழ்ச்சி

அந்த எல்லா எறும்புகளின் 

இனிப்பு ஊர்தல்களின்

ஒரு கரும்புக்காடு.

எப்படியோ

குமுக்கென்று

ஒரு சின்னஞ்சிறு பூ போல‌

அந்த சிரிப்பை உதிர்த்துவிட்டாய்.

அது என்ன‌

இந்த பஞ்சுமிட்டாய்த் தீயாய்

இனிமைப்பிரளமாய்

எங்கும் எதிலும் 

அலை துளிர்த்து என்னை

துவைத்து துவைத்துப்

போட்டுக்கொண்டிருக்கிறது.

சலவை நிலவுகளாய்

அது வானம் விம்மி விம்மி

என் மீது தட்டாம்ப்பூச்சியின்

கண்ணாடிச்சிறகுகளாய்

அதிர அதிர 

போர்த்திக்கொண்டிருக்கிறது.

பளிங்கின் விழுதுகள் போல்

என் அடிமனத்து ஆலமரத்தில்

நீ

ஊஞ்சல் ஆடிக்கொண்டே இரு.

அது போதும்.

நைந்து நைந்து பிழிந்து

வழியும் கரும்புச்சாறு எனும்

இந்த வயதுகளின் 

முட்காட்டிலிருந்து

நான்

பளிச்சென்று பூத்து வர.


_________________________________________

சொற்கீரன்.

ஞாயிறு, 1 செப்டம்பர், 2024

உன் உணவுத்தட்டில்!

 


உன் நினைவு 

உன் தினசரி உணவு.

சிந்தனையால் தீ மூட்டி

சமைத்த சொற்களில்

வந்த வரலாற்றுத்துண்டுகள்

வெந்தவையா?

வேகாதவையா?

உன் நாகரிகத்தின்

மைல் கற்களே

நினைவின்

உன் உணவுத்தட்டில்!


_________________________________________

சொற்கீரன்.

அகவை எண்பது.



என் அகவை

எண்பதை கடந்ததில்

அகமகிழ்வின்

ஆழி அலைகளை

அன்புடன் பொழியும்

எல் ஐ சி ஓய்வு

ஊதியர் சங்கத்

தோழர் பெருமக்களுக்கு

நன்றி!நன்றி!

அன்புநிறை நன்றி!!

ஆயுள் காப்பீட்டு ஆலமரம்

இலைகள் கவித்த
குடை மட்டும் அல்ல.

இந்திய இதயம்

ஒன்றே என
துடித்துக்காட்டும்

போராட்ட‌ வெற்றியின்

இமயமும் இதுவே

உயர்ந்து நிற்கும்

உறுதியும் இதுவே

அறிவீர் அறிவீர்!

எங்கள் ஒற்றுமை

என்றும் வெல்லும்.

அன்புடன்
இ பரமசிவன்.
01.09.2024
_______________________________

கோப்பைகள்

 Thanks for the FB link.

Aravindan R


கோப்பைகள்

_____________________________



அதுக்குத்தான்

எதுக்குடா வம்பு என்று

ஒரு கோப்பையில் என் குடியிருப்பு

என்பதாய்

அந்த மனங்கள் கூக்கணாங்குருவிளின்

கூடுகளில்

அந்த அலகுப்பிஞ்சுகளுக்கு

தீனி ஊட்டிக்கொண்டு

இந்த பிரபஞ்சத்தோடு

அரட்டை அடித்துக்கொண்டிருக்கின்றன.

______________________________‍‍_______

சொற்கீரன்


(மனுஷ்யபுத்ரனின் கவிதை வரிகளை

கண்ணாடி பார்த்து

கொஞ்சம் தலை சீவிக்கொண்டது 

இது.)

அப்ளாஸ்!

 



அப்ளாஸ் !

____________________________________


கேளுங்கள் அந்த‌

லட்சக்கணக்கானோர்களின்

கை தட்டல்களை.

பாராட்டுப்பிரளயங்களை.

ஏன்?

எதற்கு?

அந்த தோல் கருவி

துளைக்கருவி

நரம்புக்கருவி

மனிதனின் 

தொண்டையும் நாக்கும்

ஏற்படுத்தும்

அதிர்வின் அலைகள்

இவற்றின் கூட்டுக்கசக்கலில்

காற்று கசாப்பு செய்யப்பட்டது.

பிரம்மாண்ட இசை நிகழ்ச்சியாம்!

அந்த செவிகள் அத்தனையும்

பிரம்மாண்ட அரக்கர்களின் 

வாய்களாய் மாறி

அந்த ரத்தவெள்ளத்தை ஆசைதீர 

பருகி உருகிக் கரைந்தன.

அடச்சீ! கவிஞா!

என்ன ரசனையடா உன் கவிதை?

அதோ

அந்த சீற்ற அம்புகளில் 

சல்லடையாக்கப்பட்ட‌

கவிஞனின் சடலம்.

அதே போல்

ஒரு சுநாமிக்குப் பிறகு

அதற்கு "நோட்ஸ்" எழுதிய‌

கடவுளின் 

கந்தல் சடலமும் அதோ.


நோடா பென்.....


இனி 

பேனாவுக்கு வேலையில்லை.

முறித்துப்போடுங்கள்

என்று 

சைத்தான்கள் சாட்டையை

சுழற்றிய போது

சடலமாக விழுந்தது 

பேனாவும் தான்.

மனிதம் எனும்

மலர் 

மகரந்தம் தெறிக்க‌

மறந்து போனபோது

உதவிக்கு

"ஏ ஐ"என்ற 

பூதம் வந்து 

எல்லாவற்றையும் 

அது தின்று தீர்த்தபோது...

கடைசியாக விழுந்த சடலமே

கவிதை.


___________________________________

சொற்கீரன்